ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Igor A. Bolotnov (NCSU), invited
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 547-556
The presented review paper outlines the progress in the recent years of the high-resolution single and two-phase flow simulations of reactor-relevant flows. Rapid development of high-performance computing capabilities creates exciting opportunities to study complex reactor thermal hydraulic phenomena in future years. Today’s advances in thermal hydraulic analysis, machine learning techniques and interface resolved simulations will help pave the way to the next level of understanding of two-phase flow behavior in complex geometries. This paper consists of the two major parts: (i) history and review of interface tracking simulations for nuclear thermal hydraulics in recent years and (ii) several opportunities to apply those advanced tools in the future. First part will discuss typical computational methods used for those simulations, provide some examples of the past work, as well as computational cost estimates and affordability of such simulations for research and industrial applications. In the second part some specific examples are discussed which could be analyzed using exascale supercomputers being designed and projected to be online in the next several years. New generation methodologies are required in order to take full advantage of those capabilities to greatly enhance the scientific understanding of complex two-phase flow phenomena in nuclear reactors under normal operation and postulated accident conditions.