ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
J. Pacio, M. Daubner, T. Wetzel (KIT)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 520-530
For the design and licensing of innovative reactor concepts, the thermal-hydraulic assessment must consider both nominal conditions and postulated accidental scenarios. For the LBE-cooled MYRRHA reactor, developed at SCK•C EN (Belgium), one postulated event with low, yet non-negligible probability of occurring is the presence of local blockages in a fuel assembly. If the pins in the active region cannot be cooled efficiently, local hot spots can potentially lead to cladding failure.
In this work, thermal-hydraulic tests in a rod bundle with local blockages were performed at a large-scale LBE experimental facility at KIT (Germany), on a 19-rod bundle with wire spacers, as part of the European project MAXSIMA. The geometry, operating conditions, and blockages characteristics are representative of postulated worst-case scenarios for the MYRRHA reactor. In particular, small blockages with low thermal conductivity are studied, indicative of oxide particles accumulating along the spacers.
Local temperatures are obtained at selected wall and fluid locations, for the validation of simulations. Moreover, a semi-empirical correlation is developed for estimating the maximum wall overheat, which can be significant for blockages covering several sub-channels. Furthermore, differential pressure measurements indicate that small blockages have a negligible effect in the global relation between flow and pressure drop, and thus cannot be detected at the fuel assembly outlet.