ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. Pacio, M. Daubner, T. Wetzel (KIT)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 520-530
For the design and licensing of innovative reactor concepts, the thermal-hydraulic assessment must consider both nominal conditions and postulated accidental scenarios. For the LBE-cooled MYRRHA reactor, developed at SCK•C EN (Belgium), one postulated event with low, yet non-negligible probability of occurring is the presence of local blockages in a fuel assembly. If the pins in the active region cannot be cooled efficiently, local hot spots can potentially lead to cladding failure.
In this work, thermal-hydraulic tests in a rod bundle with local blockages were performed at a large-scale LBE experimental facility at KIT (Germany), on a 19-rod bundle with wire spacers, as part of the European project MAXSIMA. The geometry, operating conditions, and blockages characteristics are representative of postulated worst-case scenarios for the MYRRHA reactor. In particular, small blockages with low thermal conductivity are studied, indicative of oxide particles accumulating along the spacers.
Local temperatures are obtained at selected wall and fluid locations, for the validation of simulations. Moreover, a semi-empirical correlation is developed for estimating the maximum wall overheat, which can be significant for blockages covering several sub-channels. Furthermore, differential pressure measurements indicate that small blockages have a negligible effect in the global relation between flow and pressure drop, and thus cannot be detected at the fuel assembly outlet.