ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mingfu He, Youho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 449-459
The critical heat flux (CHF) sets the upper limit of efficient heat removal for pool boiling. Microstructures fabricated on a heat transfer substrate can effectively increase the limit of heat removal and delay the boiling crisis. The exact physics mechanisms behind microstructure enhancement still remain ambiguous and CHF prediction on microstructured surfaces is not well resolved even if numerous related studies and experiments have been performed. In this study, the deep belief network (DBN) is proposed to predict CHF and study parametric trends of CHF by collecting relevant CHF datasets from published papers. Performance comparisons with other four common machine learning techniques and three modified Zuber models accounting for the effects of microstructures are conducted for exploring complicated and nonlinear relation between CHF and microstructures. Different from the training process of other regression modelling problems, a special model convergence, which is defined in Subsection 3.1, is required to be incorporated into the CHF model of DBN for exhibiting accurate parametric trends of CHF and improving the prediction accuracy. Numerical results demonstrate that DBN can achieve the best performance of CHF prediction in terms of prediction accuracy. The presented methodology provides new insights for CHF modelling in pool boiling enhanced by microstructures.