ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Gang Jiang, Gang Chen, Weikun Ding, Yanghua Yang (State Power Investment Corporation Research Inst)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 388-398
After the Fukushima accident, the lessons involving in nuclear emergency management show that the emergency decision should enhance the capacity of analyzing and predicting severe accident. In order to improve this capability, the severe accident management training simulator (SAMTS) has been developed. This simulator has transplanted the self-developed integral severe accident code cosSA to the simulation platform to build the accident scenario, and coupled with computerized severe accident management guideline (CSAMG). The SAMTS provides several interventions to simulate different mitigation measures in SAMG, which help the operators handle to mitigate consequences and understanding the impact of mitigating actions on accident progression. This simulator could build the accident scene quickly to forecast and analysis to make central role of the information source for decision-making technical support in nuclear emergency management. The main purpose of this paper is to give a brief description of this simulator, including architecture, methodology, physical models of cosSA and a simulation case. Simulation results were compared with MELCOR (mainstream simulator calculation engine service) with the same initial and boundary conditions. Comparison results show that the calculation results of temperature, pressure and water level by SAMTS agree well with MELCOR. The good agreement proves the simulation capability of cosSA, which shows that cosSA could be applied into the severe accident simulator.