ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
David J. Diamond (BNL), Nicholas R. Brown (Penn State), Richard Denning (Consultant), Stephen Bajorek (NRC)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 304-316
This paper discusses liquid-fuel molten salt reactors, how they will operate under normal, transient, and accident conditions, and the results of an expert elicitation to determine the corresponding neutronic phenomena important to understanding their behavior. Identifying these phenomena will enable the U.S. Nuclear Regulatory Commission (NRC) to develop or identify modeling functionalities and tools required to carry out confirmatory analyses that examine the validity and accuracy of applicants’ calculations and help determine the margin of safety in plant design. NRC frequently does an expert elicitation using a Phenomena Identification and Ranking Table (PIRT) to identify and evaluate the state of knowledge of important modeling phenomena. However, few details about the design of these reactors and the sequence of events during accidents are known, so the process used was considered a preliminary PIRT. A panel met to define phenomena that would need to be modeled and considered the impact/importance of each phenomenon with respect to specific figures-of-merit (FoMs) (e.g., power distribution, fluence, kinetics parameters and reactivity). Each FoM reflected a potential impact on radionuclide release or loss of a barrier to release. The panel considered what the path forward might be with respect to being able to model the phenomenon in a simulation code. Results are explained for both thermal and fast spectrum designs.