ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
X. Cheng, M. Zhao (KIT), X. J. Liu (SJTU)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 227-240
The present study proposes two sets of correlations of heat transfer to supercritical water for the cases with given heat flux and given wall surface temperature, respectively. Three steps are taken to develop the new correlations. At first a large data base was established. The reliability of each test point in the data base was assessed with respect to its consistence and reproducibility. In the second step, important dimensionless parameters were identified with two different approaches, i.e. the Spearman's rank correlation and the group-wise statistic assessment. Both approaches led to the similar outcomes and identified the most important dimensionless parameters, which can be used to predict the heat transfer coefficient. In the third step, two sets of correlations were proposed for the cases of given heat flux and given wall surface temperature, respectively, to avoid iterative procedure and subsequently possible multiple solutions. Both correlations give reasonable prediction of the experimental data. Nevertheless, the correlation for the cases with given wall surface temperature shows much better accuracy than that for the cases of given heat flux.