ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Chiaki Kino, Yoshihiro Morita, Masao Chaki (The Inst of Applied Energy)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 201-211
Reactor core isolation cooling system (RCIC) is designed to operate using saturated steam extracted from a main steam line. On the other hand, RCIC in Unit-2 of Fukushima Daiichi Nuclear Power Plant was activated before the tsunami hit and continued to operate under two phase flow conditions during the accident. When RCIC continuously operates without control by electric power, reactor water level would reach the main steam line resulting in turbine efficiency degradation and subsequent RCIC stop. The mechanism for RCIC of Unit-2 to have continuously operated under such two phase flow conditions is still unclear. Currently, a project is progressing to understand the true operating limitations of RCIC system under beyond design basis event. The Institute of Applied Energy is developing the new RCIC system model for the SAMPSON code in the project. The present paper proposes a trial model for RCIC system under two phase flow conditions. The model takes the effect of quality and pressure on turbine efficiency into consideration. SAMPSON calculation based on the model could reproduce qualitatively RPV pressure behavior of Fukushima Daiichi Unit-2 accident. However there are many uncertainties, such as water temperature of S/P, isentropic efficiency, and so on, so the model will be improved based on experiment and CFD results planned in the project.