ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Chiaki Kino, Yoshihiro Morita, Masao Chaki (The Inst of Applied Energy)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 201-211
Reactor core isolation cooling system (RCIC) is designed to operate using saturated steam extracted from a main steam line. On the other hand, RCIC in Unit-2 of Fukushima Daiichi Nuclear Power Plant was activated before the tsunami hit and continued to operate under two phase flow conditions during the accident. When RCIC continuously operates without control by electric power, reactor water level would reach the main steam line resulting in turbine efficiency degradation and subsequent RCIC stop. The mechanism for RCIC of Unit-2 to have continuously operated under such two phase flow conditions is still unclear. Currently, a project is progressing to understand the true operating limitations of RCIC system under beyond design basis event. The Institute of Applied Energy is developing the new RCIC system model for the SAMPSON code in the project. The present paper proposes a trial model for RCIC system under two phase flow conditions. The model takes the effect of quality and pressure on turbine efficiency into consideration. SAMPSON calculation based on the model could reproduce qualitatively RPV pressure behavior of Fukushima Daiichi Unit-2 accident. However there are many uncertainties, such as water temperature of S/P, isentropic efficiency, and so on, so the model will be improved based on experiment and CFD results planned in the project.