ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
J. Cardoni, K. Ross, B. Beeny, D. Osborn (SNL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 183-200
The paper details the computational fluid dynamic and system-level modeling, including a mechanistic representation of a Terry turbine/pump, for Fukushima Daiichi Unit 2. Until this recent effort, mechanistic modeling had been confined to an otherwise coarse model of Fukushima Daiichi Unit 2 laden with manipulations of boundary conditions that substituted for detailed representations of the reactor, drywell, and wetwell. This work has provided insights in modeling uncertainties and provides confirmation for experimental efforts for the Terry turbopump. Analytical efforts ongoing at Sandia National Laboratories to understand the design and off-design operation of Terry turbines are introduced in this paper. The efforts are described mostly in the context of RCIC systems.