ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
T. Q. Hua A. Moisseytsev, A. Karahan, A. M. Tentner, T. Sofu (ANL), S. J. Lee, C. Y. Paik (Fauske & Associates, LLC), J. Liao, P. Ferroni (Westinghouse)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 143-159
Fauske & Associates, LLC (FAI), Argonne National Laboratory (ANL), and Westinghouse Electric Company LLC (Westinghouse) are collaborating within the program “Development of an Integrated Mechanistic Source Term Assessment Capability for Lead- and Sodium-Cooled Fast Reactors”. This program, partially funded by the Department of Energy through the Gateway for Accelerated Innovation in Nuclear (GAIN) initiative, aims at developing a computational framework for predicting radionuclide release from a broad spectrum of accidents that can be postulated to occur at Liquid-Metal Cooled Reactor (LMR) facilities. Specifically, the program couples the transient and severe accident analysis capability of the SAS4A/SASSYS-1 code developed by ANL with the radionuclide transport analysis capability of the FATE (Facility Flow, Aerosol, Thermal, and Explosion) code developed by FAI. The testing of both the individual codes and of the coupled system is performed on a generic Lead Fast Reactor (LFR) design that is intended to capture the key differences between LFR and Sodium Fast Reactor (SFR), around which the SAS4A/SASSYS-1 code has historically been developed and from which the coupled code inherits some features requiring modification before application to LFR systems. Using this approach, a computational framework applicable to both LFR and SFR systems will be obtained, which will assist LMR developers in performing a realistic, scenario-dependent mechanistic source term (MST) assessment expected not only to strengthen their safety case but also to support easier siting and claims on reduced emergency planning zone requirements. This paper discusses the work being performed to adapt the SAS4A/SASSYS-1 and FATE codes to LFR technology, the coupling method implemented, and some of the results of the LFR test case, with the latter aimed at demonstrating the progress made toward the development of the MST analysis capability that is ultimately targeted.