ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Philippe Planquart, Chiara Spaccapaniccia, Giacomo Alessi, Sophia Buckingham (von Karman Inst), Katrien Van Tichelen (SCK-CEN)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 131-142
The thermal-hydraulics challenges of a nuclear reactor are numerous and mastering these is crucial for the design and safety of new reactors. Numerical simulation through computational fluid dynamics (CFD) codes or System Thermal-Hydraulics (STH) codes can address a lot of the different questions, nevertheless the use of water modeling for the study of the thermal-hydraulic behavior of a new primary system and the validation of codes remains an extremely valuable tool. A water model of the pool-type PbBi-cooled MYRRHA reactor has been developed at the von Karman Institute in collaboration with SCK•CEN. It is a full Plexiglas model at a geometrical scale 1/5 of MYRRHA. This transparent water model allows the application of optical measurement techniques, like Particle Image velocimetry (PIV) for the flow characterization. Local results of PIV measurements performed in the lower plenum at the entrance of the core are presented and compared with CFD results for a nominal operating condition and a natural convection case simulating the decay heat removal. A very good agreement has been found in the velocity field. The results also show the importance of the radial flow entering the core of the water model in natural convection.