ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Jun Liao, Danial Utley (Westinghouse)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 117-130
Westinghouse Electric Company is developing its Next Generation of high-capacity nuclear power plant based on Lead Fast Reactor (LFR) technology: a Generation IV, compact, highly simplified, passively safe, and scalable nuclear power plant. In addition to superior economics for enabling competitiveness even in the most challenging electricity market, exceptional safety performance is actively pursued in the design of the plant, leveraging the inherent favorable properties of lead coolant as well as safety features intrinsic in the design. Being decay heat removal an integral part of any plant’s safety philosophy, a systematic process of concept selection has been employed across a wide variety of decay heat removal system designs. Among them, air cooling outside of the reactor vessel is one of the concepts that is being actively evaluated by Westinghouse. In this paper, the use of air cooling in nuclear reactors is discussed together with the identification of benefits and challenges associated with reactor vessel air cooling in LFR technology. The heat removal capability of this system is assessed with three computer codes, differing in complexity and suitability to “rapid prototyping” design activities carried out by Westinghouse during different phases of plant design. Though the computer codes were developed separately, the results of the three evaluation models tend to support each other, thus increasing the confidence in the information provided to progress the Westinghouse LFR design and establish its safety basis. Additional validation through existing and potentially new test data is foreseen as future work within the Westinghouse LFR program.