ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
F. Roelofs, D. Dovizio, D. Visser, K. Zwijsen, A. Shams (NRG)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 109-116
European lead fast reactor designs are all pool-type designs. The pool basically forms the primary system of the reactor and as such plays a crucial role in the design and safety analyses of such reactors. The safety analyses require thorough understanding of the flow and heat transport in the primary system. In the past, the design and safety analysis of liquid metal cooled reactors highly relied on design specific experimental set-ups using either a transparent, easy-to-handle simulant fluid relying on scaling analyses or using liquid metals while coping with measurement limitations. Nowadays, Computational Fluid Dynamics (CFD) has become an integral tool of the advanced reactor designer allowing simulations in 3 dimensions. However, in a heavy liquid metal pool, many complex physical phenomena come together. As such, these simulations need separate validation of the capabilities of the applied CFD codes and, on top of that, integral validation using large scale experimental facilities. This paper discusses the ongoing efforts at NRG in the Netherlands on validation of CFD tools for heavy liquid metal pool simulations with respect to flow and heat transport.