ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yue Jin, Faith R. Beek, Fan-Bill Cheung (Penn State), Stephen M. Bajorek, Kirk Tien, Chris L. Hoxie (NRC)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 98-108
In the current study, a new mass quality correlation was developed for the dispersed flow film boiling (DFFB) regime in a rod bundle geometry during bottom reflood. The new correlation was based on the fundamental conservation equations such that the physics during the reflood process can be adequately captured. It is found that the actual mass quality as well as the vapor drift velocity in the DFFB regime are functions of the void fraction, interfacial heat transfer, vapor superheat, droplet size, quench front location and the fluid properties. The Rod Bundle Heat Transfer (RBHT) reflood tests were used to verify the validity of the new correlation and to determine the coefficients. It was found that the current model is able to predict the two-phase mass quality well within 10% error when compared to experimental data.