ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Yue Jin, Faith R. Beek, Fan-Bill Cheung (Penn State), Stephen M. Bajorek, Kirk Tien, Chris L. Hoxie (NRC)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 98-108
In the current study, a new mass quality correlation was developed for the dispersed flow film boiling (DFFB) regime in a rod bundle geometry during bottom reflood. The new correlation was based on the fundamental conservation equations such that the physics during the reflood process can be adequately captured. It is found that the actual mass quality as well as the vapor drift velocity in the DFFB regime are functions of the void fraction, interfacial heat transfer, vapor superheat, droplet size, quench front location and the fluid properties. The Rod Bundle Heat Transfer (RBHT) reflood tests were used to verify the validity of the new correlation and to determine the coefficients. It was found that the current model is able to predict the two-phase mass quality well within 10% error when compared to experimental data.