ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Yucheng Fu, Yang Liu (Virginia Tech)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 57-67
Bubble separation and size detecting algorithms are developed in recent years for their promise applications, which include bubble column reactor monitoring, cell counting in vivo, oil droplet characterization in petroleum, etc. In this work, we proposed an architecture called bubble generative adversarial networks (BubGAN) to bridge the gap between the image processing algorithm development and benchmark in bubbly flow measurement. The BubGAN is trained initially on a labeled bubble dataset with ten thousand real bubble images. By learning the distribution of these bubbles, the BubGAN generates a database with million synthetic bubbles. Using this database, BubGAN can then assemble genuine bubbly flow images and provide detailed bubble information with labels on the synthetic images. The BubGAN can serve as a useful tool to benchmark the existing image processing algorithms and to help to guide the future development of bubble detecting algorithms.