ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yucheng Fu, Yang Liu (Virginia Tech)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 57-67
Bubble separation and size detecting algorithms are developed in recent years for their promise applications, which include bubble column reactor monitoring, cell counting in vivo, oil droplet characterization in petroleum, etc. In this work, we proposed an architecture called bubble generative adversarial networks (BubGAN) to bridge the gap between the image processing algorithm development and benchmark in bubbly flow measurement. The BubGAN is trained initially on a labeled bubble dataset with ten thousand real bubble images. By learning the distribution of these bubbles, the BubGAN generates a database with million synthetic bubbles. Using this database, BubGAN can then assemble genuine bubbly flow images and provide detailed bubble information with labels on the synthetic images. The BubGAN can serve as a useful tool to benchmark the existing image processing algorithms and to help to guide the future development of bubble detecting algorithms.