ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Siyang Huang, Qiqi Yan, Wenxi Tian, G. H. Su, Suizheng Qiu (Xi’an Jiaotong Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 44-56
In the nuclear power system, the critical heat flux (CHF) plays a crucial role in the reactor safety analysis. When CHF occurs, it will cause a sudden increase in the surface temperature, which would lead to the failure of fuel claddings and damage of the core. Considering the cross flow between neighboring channels, spacer grids and mixing vanes in the fuel assembly, the local flow conditions and the geometry of the flow channels make the prediction of CHF more complicated. In this paper, the departure from nucleate boiling (DNB) type CHF in rod bundle is investigated based on the coupled analysis of the subchannel method and a CHF mechanism model, i.e. the liquid sublayer dryout model. The liquid sublayer dryout model assumes that there is a thin liquid sublayer underneath a vapor blanket formed by the coalescence of small bubbles near the heated wall. The dryout of this sublayer will be regarded as the CHF occurrence. In present research, the homogeneous flow model is adopted in the subchannel analysis code to predict the local flow conditions for the rod bundle flow subchannels, which will be used as the input parameters for the liquid sublayer dryout model. In order to verify the method above, the predicted results are compared with the CHF Look-Up Table 2006 (LUT-2006) and the predicted results are in good agreement with the data in LUT-2006. In addition, the effects of rod bundle inlet subcooling, mass flux, heated length and motion conditions on CHF are analyzed.