ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Lianfa Wang, Mingjun Wang, Suizheng Qiu, Guanghui Su, Wenxi Tian (Xi’an Jiaotong Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 33-43
The lateral flow in top core region and upper plenum is detrimental for power control. The temperature heterogeneity in hot-legs induces the deviation of estimation of power level. Therefore, to investigate the lateral flow at the core outlet and temperature heterogeneity in the hot-legs of AP1000, a CFD analysis of the domain from the core inlet to hot-leg outlet was conducted. The core region was simulated by introducing additional source term in the momentum equations instead of being reconstructed in detail. A volumetric power density of hot full power derived from AP1000 middle of life was applied to the active core zone. The main internal components including control guide tubes with eight large opening windows on it and support columns were kept, while other little components including control rod assemblies were omitted to decrease the total mesh quantity. The Reynolds-averaged Navier-Stokes equations was solved with Realizable k-? turbulence model using commercial CFD code FLUENT. The coolant temperature map at the core outlet and the extent of the hot-leg suction effect on the top core region were obtained. Compared with the temperature field at core outlet, the maximum temperature difference at the entrance of the hot-leg drops 10K after the mixing in the upper plenum. The hotter coolant from central fuel assemblies remains at the upper part of the hot-leg, while the cooler coolant from peripheral fuel assemblies stays in the lower part of the hot-leg. The temperature heterogeneity and its evolvement along the hot-leg were analyzed.