ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Mark S. Lanza (Framatome Inc.), Donald R. Todd (PNNL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 27-32
A general based charcoal filter model was added to the thermal hydraulics code GOTHIC Version 8.2. The model can be used to simulate unsteady iodide transport and adsorption within a charcoal filter that is used to filter vapor exiting the containment of a nuclear plant. The code accepts user inputs for adjusting filtering efficiency and performs calculations for the time and space dependent concentration of iodides in the vapor phase as well as the adsorbed phase within a charcoal filter.
The model includes advective and diffusive transport for iodides coupled with a sorption kinetics model, including first-order reversible physisorption and second-order irreversible chemisorption. Multiple independent gaseous compounds can be modeled simultaneously. The iodide compounds within these gasses are coupled by a decay-chain model and the combined concentration of the gaseous compounds is coupled to the chemisorption capacity of the filter.
Validation of the model to predict iodide transport and sorption within impregnated, activated charcoal was performed through experimental benchmarking. The validation demonstrates that the numerical solution correctly predicts measured data.