ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
A focus on clean energy transition
Michigan-based consulting firm Ducker Carlisle has released a report that outlines projected developments and opportunities as well as potential problems in the global shift to cleaner power. Global Energy Transition Outlook predicts that market growth will happen not only in large-scale utility upgrades but also in small- and mid-scale electrification projects.
Mark S. Lanza (Framatome Inc.), Donald R. Todd (PNNL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 27-32
A general based charcoal filter model was added to the thermal hydraulics code GOTHIC Version 8.2. The model can be used to simulate unsteady iodide transport and adsorption within a charcoal filter that is used to filter vapor exiting the containment of a nuclear plant. The code accepts user inputs for adjusting filtering efficiency and performs calculations for the time and space dependent concentration of iodides in the vapor phase as well as the adsorbed phase within a charcoal filter.
The model includes advective and diffusive transport for iodides coupled with a sorption kinetics model, including first-order reversible physisorption and second-order irreversible chemisorption. Multiple independent gaseous compounds can be modeled simultaneously. The iodide compounds within these gasses are coupled by a decay-chain model and the combined concentration of the gaseous compounds is coupled to the chemisorption capacity of the filter.
Validation of the model to predict iodide transport and sorption within impregnated, activated charcoal was performed through experimental benchmarking. The validation demonstrates that the numerical solution correctly predicts measured data.