ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Lucian Ivan (CNL), Scott Northrup (Univ of Toronto), Nusret Aydemir (CNL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 17-26
The governing equations of thermal-hydraulic flows exhibit numerical stiffness as a consequence of significant differences in the physical behavior of the phase constituents and the presence of stiff source terms. Computational methods to cope with these issues are evaluated in this work based on a two-fluid model. To circumvent the stringent time-step restrictions of explicit schemes imposed by stability limits, a parallel implicit Newton-Krylov-Schwarz (NKS) approach is investigated. However, the ability to take a much larger time step is not tantamount to low computational cost, as implicit methods applied to multiphase flows do require the solution of a sparse, linear system of equations, which increases the memory requirements and computational cost per iteration. Parallel implementations of implicit schemes are also more difficult to achieve than those of explicit methods. Consequently, an assessment of the implicit method is required to guide the choice of optimal parameters for convergence acceleration, which in many instances is problem dependent. Previous studies on the computational cost of implicit vs. explicit methods for the same solution accuracy have not been conclusive. This work aims to expand the body of research on this issue by studying the properties of the parallel implicit NKS algorithm for a range of relevant thermal-hydraulic benchmark problems.