ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Kazuo Takino, Kazuteru Sugino, Kenji Yokoyama (JAEA), Tomoyuki Jin (NESI Inc.), Shigeo Ohki (JAEA)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1214-1220
Since next-generation fast reactors aim to achieve a higher core discharge burn-up than that of the conventional ones, nuclear design methods need to refine. In this study, we investigated the effect that the analysis conditions exhibit on the accuracy of estimations of the burn-up nuclear characteristics of next-generation fast reactors. Suitable analysis schemes and conditions that maximize the estimation accuracy, while maintaining a low computational cost, were investigated in this study.
We performed core burn-up survey calculations under several analysis conditions. In the survey calculations, we calculated the criticality, burn-up reactivity, control rod worth, breeding ratio, assembly-wise power distribution, maximum linear heat rate, sodium void reactivity, and Doppler coefficient for the equilibrium operation cycles. The accuracy of the low-cost calculations was evaluated by measuring the agreements with the referential detailed conditions.