ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Wang Kai, Xiaowei Jiao, Chuangxiong Cai, Zhaozhong He, Kun Chen (CAS)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1199-1204
Direct auxiliary cooling system (DRACS) is one candidate for FHR (Fluoride-salt-cooled High temperature reactor) decay heat removal system. DRACS relies on buoyancy as the driving force to form natural circulation to remove the decay heat. As a passive engineered safety feature, some key parameters and models must be validated. In order to study the characteristics of the natural circulation of the molten salts, a high-temperature molten salt natural circulation experiment loop has been designed and constructed by the TMSR (Thorium Molten Salt Reactor) center of the Chinese Academy of Sciences (CAS) with nitrate selected to be coolant. A series of experiments have been scheduled to be conducted on the loop, this loop could be used as a validation facility for DRACS. In this paper, steady-state natural circulation experiment results are shown. The results show that NNCL (nitrate natural circulation loop) was running steady and reliable, and the heat can be removed continuously. The RELAP5-MS code is employed to simulate NNCL behavior, and the simulation results coincide with experiment results. The modified RELAP5-MS can be used for the molten salt natural circulation system analysis. Based on these experiments and simulation results, the DRACS system can be used in the molten salt reactor as the decay heat removal system.