ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Wang Kai, Xiaowei Jiao, Chuangxiong Cai, Zhaozhong He, Kun Chen (CAS)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1199-1204
Direct auxiliary cooling system (DRACS) is one candidate for FHR (Fluoride-salt-cooled High temperature reactor) decay heat removal system. DRACS relies on buoyancy as the driving force to form natural circulation to remove the decay heat. As a passive engineered safety feature, some key parameters and models must be validated. In order to study the characteristics of the natural circulation of the molten salts, a high-temperature molten salt natural circulation experiment loop has been designed and constructed by the TMSR (Thorium Molten Salt Reactor) center of the Chinese Academy of Sciences (CAS) with nitrate selected to be coolant. A series of experiments have been scheduled to be conducted on the loop, this loop could be used as a validation facility for DRACS. In this paper, steady-state natural circulation experiment results are shown. The results show that NNCL (nitrate natural circulation loop) was running steady and reliable, and the heat can be removed continuously. The RELAP5-MS code is employed to simulate NNCL behavior, and the simulation results coincide with experiment results. The modified RELAP5-MS can be used for the molten salt natural circulation system analysis. Based on these experiments and simulation results, the DRACS system can be used in the molten salt reactor as the decay heat removal system.