ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Jun-Yi Zhang, Xiao Yan (CNNC Key Laboratory on Reactor Thermal Hydraulics Technology), Ze-Jun Xiao (Hualong Pressurized Water Reactor Technology Corporation, Ltd.), Yong-Ze Xu (CD-adapco)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1134-1143
Subcooled boiling heat transfer, which is related to Departure of Nucleate Boiling(DNB), is highly concerned in fuel assembly of PWR. It is of importance and significance to predict void fraction and mass/energy transfer characteristics among sub-channels under subcooled boiling with 3-D CFD code to obtain more details for better understanding of two-phase flow process in rod bundle. To better understand and predict void distribution and its transportation characteristics in rod bundle, two-phase flow simulation with two-fluid model was carried out with Heat Partitioning Model. In this study, the 5×5 full length PSBT rod bundle with Uniform-Axial Power Distribution (U-APD) was used under prototype condition (test serial of B5 configuration) to test the physical method. The parameter distribution in axial and radial orientation among different sub-channels at the downstream of the last Mixing Vane Grid(MVG), where the DNB occurs at the end of the heated section, was studied. Different void fraction distribution was observed among central channels, side channels and corner channels. It is induced by different mass transfer process results from the layout of mixing vanes. Moreover, different mass transfer characteristics occurred between corner channels at the different location. Energy transfer is related to the mass transfer among sub-channels. The simple support grid (SSG) shows a suppression of radial transverse flow which is introduced by the mixing vanes for heat transfer enhancement.