ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Botros N. Hanna, Nam Dinh, Igor A. Bolotnov (NCSU)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1125-1133
Nuclear reactor safety research requires analysis of a broad range of accident scenarios. The major and the final safety defense barrier against nuclear fission products release during severe accident is the containment. Modeling and simulation are essential to identify parameters affecting Containment Thermal Hydraulics (CTH) phenomena. The modeling approaches used in nuclear industry can be classified in two categories: system-level codes and Computational Fluid Dynamics (CFD) codes. System codes are not as capable as CFD of capturing and giving detailed knowledge of the multi-dimensional behavior of CTH phenomena. However, CFD computational cost is high when modeling complex accident scenarios, especially the ones which involve long-time transients. The high expense of traditional CFD is due to the need for computational grid refinement to guarantee that the solutions are grid independent. To mitigate the computational expense, it is proposed to rely on coarse-grid CFD (CG-CFD).
This work presents a method to produce a data-driven surrogate model that predicts the grid-induced local errors. Given the massive high-fidelity data that are produced by either experiments or high-fidelity validated simulations, a surrogate model is trained to predict the grid-induced local errors as a function of coarse-grid features.
The proposed method is applied on a three-dimensional turbulent flow inside a lid-driven cavity. The capability of the method is assessed by applying the trained statistical model on new cases that have different grid size and/or geometry (aspect ratio). The proposed approach is shown to have a good predictive capability.