ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Botros N. Hanna, Nam Dinh, Igor A. Bolotnov (NCSU)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1125-1133
Nuclear reactor safety research requires analysis of a broad range of accident scenarios. The major and the final safety defense barrier against nuclear fission products release during severe accident is the containment. Modeling and simulation are essential to identify parameters affecting Containment Thermal Hydraulics (CTH) phenomena. The modeling approaches used in nuclear industry can be classified in two categories: system-level codes and Computational Fluid Dynamics (CFD) codes. System codes are not as capable as CFD of capturing and giving detailed knowledge of the multi-dimensional behavior of CTH phenomena. However, CFD computational cost is high when modeling complex accident scenarios, especially the ones which involve long-time transients. The high expense of traditional CFD is due to the need for computational grid refinement to guarantee that the solutions are grid independent. To mitigate the computational expense, it is proposed to rely on coarse-grid CFD (CG-CFD).
This work presents a method to produce a data-driven surrogate model that predicts the grid-induced local errors. Given the massive high-fidelity data that are produced by either experiments or high-fidelity validated simulations, a surrogate model is trained to predict the grid-induced local errors as a function of coarse-grid features.
The proposed method is applied on a three-dimensional turbulent flow inside a lid-driven cavity. The capability of the method is assessed by applying the trained statistical model on new cases that have different grid size and/or geometry (aspect ratio). The proposed approach is shown to have a good predictive capability.