ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shinji Matsushita, Masafumi Nojima (Hitachi), Takeshi Sakai, Tadashi Fujii (Hitachi-Ge Nuclear)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1098-1104
Corium cooling system plays an important role to prevent the interaction between the molten corium and concrete of a pedestal region. As the material for constituting the corium cooling system, zirconia-based refractory materials are promising due to its high melting points and chemical stabilities. To estimate the erosion depth of the refractory material in the severe accidents, we developed an interaction model for molten corium and zirconia refractory material based on the erosion mechanism. Our developed model were based on two main phenomena; reduction reaction of the zirconia refractory material and oxygen diffusion in the zirconia. On the interface of the molten corium, oxygen in the zirconia are extracted by the reduction reaction. On the other hand, in the zirconia, oxygen are transferred to the interface according to Fick's laws of diffusion because the reduction reactions induce concentration gradient of oxygen in the zirconia. Thus, the erosion rate of the zirconia are governed by the reduction reaction and oxygen diffusion. We modeled the erosion behaviors as three phase: (1) just reduction reaction phase, (2) transitional erosion phase, (3) steady erosion phase. As a result, we found that our model grasp the trend of the erosion behaviors. As the future works, we require to investigate the temperature dependency of the reduction reaction rate to evaluate more accurately.