ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
L. Costes, P. Lo Pinto, Y. Lejeail, P. Quellien (CEA), B. Carluec, S. Beils, P. Hauville (Framatome)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1091-1097
ASTRID is the French Advanced Sodium Technological Reactor for Industrial Demonstration which is intended to prepare the Generation IV reactor, with strong improvements in safety and operability.
In this frame, the ASTRID project integrates innovative options. In the earlier phase of ASTRID project, a specific safety approach was set. Main orientations have been examined by the French Nuclear Safety Authority, and the pursuit of the project following these guidelines has been agreed. This basic safety guide is currently applied as reference for the choices of the design options and for safety studies, among other studies regarding hypothetical situations.
Thus, in the frame of ASTRID safety approach, analyses are devoted to well define and study hypothetical situations, which include:
- A domain of accidental sequences with very low occurrence frequency for which severe accident can reasonably be prevented thanks to appropriate design provisions: the domain of severe accident prevention situations (SP);
- Despite the high level of prevention of severe accident implemented in ASTRID, its safety approach postulates also a hypothetical severe accident, in order to comply with the defense-in-depth principle (fourth level) and to check that the induced potential consequences are suitably mitigated: the domain of severe accident mitigation situations (SM);
- A few hypothetical situations, whose consequences could not be reasonably mitigated, and consequently requiring a robust specific safety demonstration, in terms of prevention. These situations have to be “practically eliminated”.
In a first main part, the paper presents:
- The definition of “practically eliminated situations” (SPE),
- The approach used to identify these situations in an exhaustive way,
- The list of “practically eliminated situations” for ASTRID project, issued from the previous methodology.
The second part of the paper focuses on the design impact of the need to practically eliminate one of the identified situations: the “brutal failure of supporting core structures”. The consequences on the structures, involved in the demonstration, are presented (in terms of design, preventive provisions and monitoring means implemented).The paper thus presents the reactor design evolutions to take into account the practical elimination of this situation.
These evolutions represent improvements in relation to past projects.