ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Andhika F. Wibisono (Univ of Cambridge), Jeong Ik Lee (KAIST), Eugene Shwageraus (Univ of Cambridge)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1056-1065
Nuclear power plants (NPPs) are known to be used as providers of base-load power. As the share of the intermittent renewables in the energy mix increases, the maneuvering (load-following) of NPPs is becoming more important. Previous studies have found that combining Light Water Reactors (LWRs) with external superheater would improve their cycle thermal efficiencies and maneuvering capabilities. Implementation of this concept in a small modular boiling water reactor (SMBWR) might offer additional benefits, such as vessel size reduction and further boost of cycle thermal efficiency at higher operating pressure. This paper presents a preliminary design of hybrid SMBWR, focusing on the effect of system pressure on reactor capability to operate with natural recirculation of coolant and on steam cycle thermodynamic performance. It is demonstrated that hybrid SMBWR has natural circulation system operating at higher pressure than the conventional system by increasing its chimney height. The study of the effect of system pressure on power cycle thermodynamic performance was done by considering both fossil fuel heat and renewable heat as the potential heat source for the external superheater. The cycle thermal efficiency of hybrid SMBWR with fossil heat option varies between 40 to 42% depending on the system operating pressure while the values for renewable heat option are between 38 to 40%.