ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Junichi Miwa, Takeshi Mitsuyasu, Tetsushi Hino (Hitachi, Ltd.)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1050-1055
The resource-renewable boiling water reactor (RBWR) has been proposed as an innovative boiling water reactor (BWR) that has the capability to burn transuranium elements (TRUs) using a multi-recycling process by hardening the neutron energy spectrum. In this paper, RBWR core configurations with flat radial power distribution are investigated. In general, flat distribution of the radial power will be achieved if fuel bundles with a relatively large amount of fissile nuclides are arranged in a relatively low neutron flux area except for the outermost region of the core. There are two design policies of fuel bundle arrangement for flat distribution of the radial power. One is scatter loading using the local neutron flux gradient area is intentionally produced by arranging fuel bundles. The other is zone loading using the overall neutron flux gradient due to a leakage of neutrons to the radially outer side of the reactor core. For RBWR, both loading policies are adopted in succession. First, zone loading is adopted in the outer region of the reactor core in the radial direction. The fresh fuel bundles that have a relatively large amount of fissile nuclides are arranged in the radial outer region. Scatter loading is also adopted in the inner region of the reactor core in the radial direction. The inner region is divided into several layer rings that consist of a bundle in the angular direction. Layer rings for 2nd, 3rd, and 4th cycle fuel are arranged adjacently to each other. The radial power distribution at the end of cycle (EOC) is calculated using the whole core transport calculation, and it is confirmed that the radial power of RBWR is distributed in flat shape to be applied to the combined fuel arrangement of scatter loading and zone loading.