ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jinsuo Zhang, Shaoqiang Guo (Virginia Polytechnic Inst and State Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 1029-1033
Molten salts have many applications in nuclear engineering, for example, pyroprocessing for used nuclear fuel treatment for which molten chloride salts are used, and molten salt rectors for which both chloride salt and molten fluoride salts are used. Materials corrosion is more challenging in these molten salt systems as the formation of the passivating oxide layer on the corrosion resistant alloys becomes thermodynamically less favorable. Materials corrosion in molten fluorides appears as bare alloy dissolution while the oxide layers formed in molten chlorides are typically porous, leading to the active metal dissolution in both molten fluoride and chloride salts. This restricts the use of many corrosion resistant alloys that rely on the passivating oxide layers. The present study conducted a critical review on materials corrosion in molten chloride and fluoride salts. The key environmental factors that influence corrosion in nuclear molten salt systems are discussed, including typical oxidants in the salt, fission product tellurium embrittlement, interactions with dissimilar materials, and temperature gradient. The historical development of corrosion resistant alloys for molten salt systems and recent attempts are also reviewed, and the effects of alloying elements and grain size were analyzed. One of the corrosion mitigation methods is to control the redox condition of the molten salt. Therefore, the study also analyzes the available redox control methods as well as the advantages and disadvantages of these methods. Finally, the current progress and challenges are summarized with an attempt at identifying the knowledge gaps and future research directions.