ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. Minelli, M. Golay, J. Buongiorno, N. Todreas (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 988-997
The Offshore Floating Nuclear Plant (OFNP) design creatively builds on two established technologies, namely light water reactors (LWRs) and floating oil/gas platforms. Marine siting as well as several design features produce a particularly safe plant. The concept exploits the advances and experience in the construction of large floating structures in the oil/gas offshore industry and naval shipyards to decrease construction time and cost compared to standard nuclear power plants.
This work aims to compare the Net Present Value (NPV) of two different projects, when important uncertainties are taken into account:
- Construction of multiple (up to four) small modularunits (275 MW each)
- Construction of one single unit of equivalent power(1100 MW).
Some of the major sources of uncertainties in large and complex nuclear projects are price of electricity, construction cost, discount rate, years of operation, capacity factor and transportation costs. Such sources of uncertainty are quantified through specification of documented averages and reasonable ranges of variability.
This information is first used to perform a sensitivity analysis which shows that the NPV of an OFNP project is affected most strongly by price of electricity, construction cost and discount rate. Then, all uncertainties are assigned a probability distribution function (pdf) and combined with a Monte Carlo approach to generate a pdf for the NPV of a project.
The results show that construction of four small modular units is the preferred alternative as it is characterized by a higher average and median NPV. Additional qualitative advantages of the smaller modular units include the lower initial capital expenses, hence lower financial risk, and higher project flexibility overall.