ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
H. J. Uitslag-Doolaard, F. Alcaro, F. Roelofs, K. Zwijsen (NRG)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 945-954
The description of the “Dissymmetric Test” performed in the Phénix sodium fast reactor has recently become available as a blind benchmark for thermal-hydraulic modelling within the H2020 SESAME project. The transient consists of a largely asymmetric temperature distribution in the sodium pool resulting from a pump trip in one of the two intermediate circuits, followed by a reactor scram. Although this transient is particularly suitable to validate a 3-D Computational Fluid Dynamics (CFD) model of the thermal-hydraulics in the sodium pool, the computational cost of a relatively long transient analysis with a full-scope CFD model of the whole Phénix reactor system would be huge. The present paper describes the system thermal-hydraulic (STH) model and the multiscale approach adopted by NRG for the simulation of the Dissymmetric Test. The in-house STH code SPECTRA was used to model the complete primary and secondary sides (intermediate loops) and explicitly coupled with the CFD code ANSYS CFX. The latter was used to resolve the details of the flow distribution inside the sodium pools, as well as at the outlet window of the primary side of the intermediate heat exchangers. An STH stand-alone simulation of the transient was carried out for comparison.