ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
H. J. Uitslag-Doolaard, F. Alcaro, F. Roelofs, K. Zwijsen (NRG)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 945-954
The description of the “Dissymmetric Test” performed in the Phénix sodium fast reactor has recently become available as a blind benchmark for thermal-hydraulic modelling within the H2020 SESAME project. The transient consists of a largely asymmetric temperature distribution in the sodium pool resulting from a pump trip in one of the two intermediate circuits, followed by a reactor scram. Although this transient is particularly suitable to validate a 3-D Computational Fluid Dynamics (CFD) model of the thermal-hydraulics in the sodium pool, the computational cost of a relatively long transient analysis with a full-scope CFD model of the whole Phénix reactor system would be huge. The present paper describes the system thermal-hydraulic (STH) model and the multiscale approach adopted by NRG for the simulation of the Dissymmetric Test. The in-house STH code SPECTRA was used to model the complete primary and secondary sides (intermediate loops) and explicitly coupled with the CFD code ANSYS CFX. The latter was used to resolve the details of the flow distribution inside the sodium pools, as well as at the outlet window of the primary side of the intermediate heat exchangers. An STH stand-alone simulation of the transient was carried out for comparison.