ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Anfield Energy to start construction of Utah uranium mine
British Columbia, Canada–based Anfield Energy has scheduled a ground-breaking ceremony on November 6 at its Velvet-Wood uranium and vanadium mine, located in southeastern Utah’s Lisbon Valley. According to Anfield CEO Corey Dias, it will be “more than a ground breaking—it’s a bold declaration of Anfield’s readiness to help fuel the American nuclear renaissance.”
H. J. Uitslag-Doolaard, F. Alcaro, F. Roelofs, K. Zwijsen (NRG)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 945-954
The description of the “Dissymmetric Test” performed in the Phénix sodium fast reactor has recently become available as a blind benchmark for thermal-hydraulic modelling within the H2020 SESAME project. The transient consists of a largely asymmetric temperature distribution in the sodium pool resulting from a pump trip in one of the two intermediate circuits, followed by a reactor scram. Although this transient is particularly suitable to validate a 3-D Computational Fluid Dynamics (CFD) model of the thermal-hydraulics in the sodium pool, the computational cost of a relatively long transient analysis with a full-scope CFD model of the whole Phénix reactor system would be huge. The present paper describes the system thermal-hydraulic (STH) model and the multiscale approach adopted by NRG for the simulation of the Dissymmetric Test. The in-house STH code SPECTRA was used to model the complete primary and secondary sides (intermediate loops) and explicitly coupled with the CFD code ANSYS CFX. The latter was used to resolve the details of the flow distribution inside the sodium pools, as well as at the outlet window of the primary side of the intermediate heat exchangers. An STH stand-alone simulation of the transient was carried out for comparison.