ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
D. Shome, M. A. R. Sarkar (BUET)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 893-899
The objective of this paper is to present and analyze the results of simulated tube rupture accident in VVER-1000 Nuclear Reactor in PCTRAN. In simulating the accident, 100% of one full tube rupture has been considered. The simulation result shows that the core pressure experience a rapid decrease from initial value of 155 bar (15.5 MPa) and stabilize around 80 bar (8 MPa) after the accident. This leads to stopping coolant leakage from primary circuit to secondary circuit due to absence of pressure differential between primary and secondary loop. After the initiation of tube rupture, the leak from affected Steam Generator ‘A’ is about 3000 t/h (833.33 kg/s) which is reduced to approximately 500 t/h(138.89kg/s) within 200s of the accident. The result also shows that the reactor power (both ‘Thermal’ and ‘Nuclear Flux’) collapses drastically following reactor trip. Both High Pressure Injection (HPI) pump is activated following “Reactor Scram” to prevent core damage. The average temperature of coolant at the reactor inlet decreases from 580K to 560K to facilitate cooling down of the primary coolant. The data obtained from the simulation are satisfactorily consistent with PSAR (Preliminary Safety Assessment Report) data regarding SGTR accident. These findings are expected to provide useful information in understanding and evaluating plants capability to mitigate the consequence of SGTR accident.