ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
D. Shome, M. A. R. Sarkar (BUET)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 893-899
The objective of this paper is to present and analyze the results of simulated tube rupture accident in VVER-1000 Nuclear Reactor in PCTRAN. In simulating the accident, 100% of one full tube rupture has been considered. The simulation result shows that the core pressure experience a rapid decrease from initial value of 155 bar (15.5 MPa) and stabilize around 80 bar (8 MPa) after the accident. This leads to stopping coolant leakage from primary circuit to secondary circuit due to absence of pressure differential between primary and secondary loop. After the initiation of tube rupture, the leak from affected Steam Generator ‘A’ is about 3000 t/h (833.33 kg/s) which is reduced to approximately 500 t/h(138.89kg/s) within 200s of the accident. The result also shows that the reactor power (both ‘Thermal’ and ‘Nuclear Flux’) collapses drastically following reactor trip. Both High Pressure Injection (HPI) pump is activated following “Reactor Scram” to prevent core damage. The average temperature of coolant at the reactor inlet decreases from 580K to 560K to facilitate cooling down of the primary coolant. The data obtained from the simulation are satisfactorily consistent with PSAR (Preliminary Safety Assessment Report) data regarding SGTR accident. These findings are expected to provide useful information in understanding and evaluating plants capability to mitigate the consequence of SGTR accident.