ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
H. Mazhar, C. Azih, R. David (CNL)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 849-858
Nuclear power generation contributes over 50% electricity generation in Ontario and approximately 16% in Canada. Nuclear power is a reliable and clean energy generation technology. Although the amount of GreenHouse Gas (GHG) emissions from the nuclear power generation cycle is not insignificant, it is demonstrated to be much lower than that of fossil fuel energy systems. The GHG level depends on the entire cycle of the nuclear fuel which differs depending on the type of reactor and fuel used. There are several methodologies used in the literature to perform a complete nuclear life cycle assessment (LCA). Significant variations were reported due to the differences in the utilized analysis methods, different contributing phases in the life cycle, as well as the primary energy mix supplying the individual processes. The current study utilizes the process analysis method to perform a life cycle assessment of the Canadian nuclear fuel cycle and the environmental impact based on GHG emissions. The study utilizes the most up-to-date information on the energy mix, and processing methods for each phase of the cycle. This will help establish a fair comparison and to aid policy makers in deciding the future of the energy generating mix in Canada.