ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Seon Jeong Huh (Kookmin Uniy), Joo Hyung Moon, Youngmin Bae, Young In Kim (KAERI), Hee Joon Lee (Kookmin Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 844-848
Local condensation heat transfer coefficient inside a circular vertical tube was experimentally measured for the design purpose of an air-cooled shell and tube heat exchanger in long term passive cooling system. An experiment was conducted in a 1/2500-volume scaleddown model of the emergency cooldown tank (ECT) of the system integrated modular advanced reactor (SMART). While saturated vapor downstream (Ref < 30) flows in the shell side, air natural upstream flows in the tube side. The inner diameter and length of the tube were 261.4 mm and 1.8 m. The outer diameter of the shell was 318.5 mm. Eleven thermocouples were installed at 150 mm apart alongside the outer wall of SUS plate, a thickness of 3 mm, between vapor and air streams. During a performance evaluation of the shell and tube heat exchanger, the heat loss from the emergency cooldown tank was approximately 30% of the total heat load from 1.2 to 1.4 kW. Local condensation heat transfer coefficients were reduced by the Nusselt equation with ranging the quality from 1 to 0. With the range of mass flux from 0.1 to 0.2 kg/m2/s, condensation heat transfer coefficients were distributed at 110 ~ 350 W/m2/K. The experimental data was compared to the existing condensation heat transfer correlations. Among those, Shah correlation gave the best prediction of current experimental data with 54% average error. To increase the accuracy, new correlation is proposed based on the Dittus-Boelter equation and local quality in this study. New proposed correlation predicts current experimental data with 10% average error.