ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Seon Jeong Huh (Kookmin Uniy), Joo Hyung Moon, Youngmin Bae, Young In Kim (KAERI), Hee Joon Lee (Kookmin Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 844-848
Local condensation heat transfer coefficient inside a circular vertical tube was experimentally measured for the design purpose of an air-cooled shell and tube heat exchanger in long term passive cooling system. An experiment was conducted in a 1/2500-volume scaleddown model of the emergency cooldown tank (ECT) of the system integrated modular advanced reactor (SMART). While saturated vapor downstream (Ref < 30) flows in the shell side, air natural upstream flows in the tube side. The inner diameter and length of the tube were 261.4 mm and 1.8 m. The outer diameter of the shell was 318.5 mm. Eleven thermocouples were installed at 150 mm apart alongside the outer wall of SUS plate, a thickness of 3 mm, between vapor and air streams. During a performance evaluation of the shell and tube heat exchanger, the heat loss from the emergency cooldown tank was approximately 30% of the total heat load from 1.2 to 1.4 kW. Local condensation heat transfer coefficients were reduced by the Nusselt equation with ranging the quality from 1 to 0. With the range of mass flux from 0.1 to 0.2 kg/m2/s, condensation heat transfer coefficients were distributed at 110 ~ 350 W/m2/K. The experimental data was compared to the existing condensation heat transfer correlations. Among those, Shah correlation gave the best prediction of current experimental data with 54% average error. To increase the accuracy, new correlation is proposed based on the Dittus-Boelter equation and local quality in this study. New proposed correlation predicts current experimental data with 10% average error.