ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Minghui Chen, Xiaodong Sun (Univ of Michigan), Richard N. Christensen (Univ of Idaho)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 835-843
Printed circuit heat exchangers (PCHEs) are promising to be employed in high-temperature gascooled reactors (HTGRs) due to their compactness and intrinsic characteristics of capable of providing high-temperature and high-pressure heat for industrial applications. In our previous study, a reduced-scale zigzag-channel PCHE was fabricated out of Alloy 617 and its heat transfer and pressure drop characteristics were investigated experimentally in a high-temperature helium test facility. In our current study, a computational fluid dynamics (CFD) code, STAR-CCM+, was used to simulate the thermalhydraulic performance of the fabricated PCHE with a simplified geometry model. Comparisons between the experimental data and the CFD simulations showed some discrepancies in the pressure drop and heat transfer results, which may be caused by the use of different thermal boundary conditions in the simulations from those in the experiments. The simplified heat exchanger simulation model was divided into eight segments to identify the thermal boundary conditions for the zigzag-channel PCHE. The temperature and heat flux distributions along the fluid flow direction in the heat exchanger for each segment were obtained. It was observed that the temperatures were not constant along the azimuthal direction of a cross section of the flow channel and the helium temperature distribution for each segment presented a wavy shape. However, the global helium temperature distribution along the entire flow channel was approximately linear. For the heat flux distributions, although they were significantly different at different segments, the trend for the heat flux for each segment along the fluid flow direction was similar.