ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Hao Wang, Zhiyao Xing, Eugene Shwageraus (Univ of Cambridge)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 805-814
The availability of Tritium is a problem for the Deuterium-Tritium (D-T) fusion reactors since the element does not exist in nature and has to be bred from Li-6 through neuron capture. The goal of this paper is to explore a possibility of operating a symbiotic system consisting of fleets of fission reactors coupled with fusion reactors. It is proposed in this paper to use salt with high Li-6 content in Fluoride salt-cooled High-temperature Reactor (FHRs) to produce tritium as fuel for D-T fusion reactors. Tritium breeding blankets will therefore no longer be required, potentially making fusion reactors simpler and cheaper to construct and maintain. Two FHR designs, i.e. pebble bed and prismatic block, are studied in this work to investigate the feasibility of the proposed Fission-Fusion hybrid systems. An investigation into neutronics, tritium production, and potential safety issues in the proposed FHR designs are carried out. The tradeoffs between fission reactor performance, such as achievable burnup and fresh fuel enrichment, and tritium production rate are also discussed. Results have shown that such hybrid systems are attractive and potentially feasible. The maximum tritium production rate of the selected design options can reach up to approximately 4 kg per GW thermal power per year.