ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
W. H. Doniger, T. Chrobak, K. Dolan, K. Britsch, A. Couet, K. Sridharan (Univ of Wisconsin, Madison)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 799-804
A static corrosion experiment at UW-Madison aims to demonstrate the ability to mitigate corrosion of structural materials at 700?C by controlling the FLiBe salt redox condition. The utility of an electrochemical cell potential called the FLiBe salt redox potential is investigated as a metric for predicting the corrosive potential of FLiBe salt. In general, a salt which possesses a redox potential that is small in magnitude is considered less corrosive, more reducing, than a salt with a larger, more oxidizing, redox potential. The magnitude of the cell potential, measured between a molybdenum electrode and a dynamic beryllium reference electrode (DBRE), is correlated with the introduction of common FLiBe salt impurities, such as chromium, iron and nickel fluorides. Corrosion samples were exposed to FLiBe with varying redox conditions: as received purified FLiBe and FLiBe which has been chemically reduced with beryllium metal. The salts were characterized using the FLiBe salt redox potential and spectroscopic analytical chemistry to elucidate the importance of controlling the salt redox condition during reactor operation.