ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Seul-Been Kim, Jaeho Lee, Goon-Cherl Park, Hyoung Kyu Cho (Seoul National Univ)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 772-776
The necessity of the latest codes and methods for safety demonstration is increased to satisfy new safety requirement and achieve improved margin management. In this circumstance, it becomes an important issue that high-fidelity and multi-physics simulation with coupled T/H (Thermal-Hydraulics) and neutronics code for light water reactor whole core. With the improved computing power, the subchannel scale T/H analysis could be used as a suitable tool for pin-by-pin whole core simulation considering both accuracy of simulation and reasonable calculation time.
CUPID is a multi-dimensional two-phase flow analysis code developed by KAERI for the analysis of reactor core component. It has been validated against various experimental data and applied for practical nuclear applications. Recently, its applicability was extended to the subchannel scale T/H analysis. It is highly parallelized with the domain decomposition and message passing interface and these features facilitated the extension to use the code for the whole reactor core pipby- pin analysis in the subchannel scale. Required physical models for the subchannel scale analysis, for example, turbulent mixing and void drift models, were implemented and validated against available subchannel experiments.
In the present study, the grid spacer model was implemented for the enhancement of accuracy of the simulation. Afterwards, the mixing vane model was implemented considering lateral momentum exchange between adjacent subchannels by the mixing vane. For the validation of models, PSBT 5x5 experiment was simulated using CUPID, and the calculation result was compared with the CTF calculation. These implemented models can contribute to improve the prediction capability of CUPID for more realistic whole reactor core transient analysis.