ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Austregesilo, T. Hollands (GRS)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 746-754
The thermal-hydraulic system code ATHLET is one main component of the German code package AC2, developed at GRS for comprehensive analyses of nuclear power plants under design basis and beyond design basis accident conditions. In the frame of code validation, five of the eight experiments performed in the German integral test facility PKL within the OECD/NEA joint project PKL-3 have been selected for the evaluation of code capabilities. One main focus has been the simulation of station blackout (SBO) scenarios. Calculation results show that ATHLET can adequately reproduce the main experimental phenomena, including pressure and temperature evolutions, coolant distribution in the primary circuit, and restart of natural circulation in the loop with emergency feedwater injection. Another main contribution to code validation was the simulation of small break loss-of-coolant (SBLOCA) tests. These tests have been designed as counterpart tests to experiments previously performed at the Japanese LSTF facility, providing a sound indication of the scalability of code results.