ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Joseph R. Burns, David Chandler (ORNL), Bojan Petrovic (Georgia Tech), Kurt A. Terrani (ORNL)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 738-745
The application of advanced manufacturing to the fabrication of control elements (CEs) for the High Flux Isotope Reactor (HFIR) is under investigation at the Oak Ridge National Laboratory. Advanced manufacturing yields a unique CE design with lumped neutron absorbers, necessitating investigation of the neutronic implications of employing this novel CE design in HFIR. This work assesses the operational performance of advanced manufactured CEs in HFIR throughout their useful lifetime. CE depletion calculations are carried out for long residence time (50 cycles) under several predictor-corrector approximation schemes of varying rigor, with their reactivity worth evaluated at beginning, middle, and end of life. While coarse temporal divisions of the long CE irradiation time yield prominent discrepancies in the isotopic content predicted by each approximation, the corresponding reactivity worth predictions are reasonably consistent across approximations. Further, regardless of the approximation employed, the reactivity worth of the advanced manufactured CEs is found to be comparable to that of the original CEs throughout their useful lifetime. The core power distribution is also not prohibitively perturbed by the introduction of the new CE design at any time in the CE life. Pending irradiation characterization testing, it may thus be concluded that the advanced manufactured CE design can successfully replace the current design and is neutronically feasible for the operation of HFIR.