ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Chenglin Zhu, Yuhang Yan, Shuo Li, Hui Yu (SPICRI)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 732-737
The cosLATC is a multi-group two-dimensional lattice code developed by SNPSDC, which is an essential part in the COSINE(Core and System Integrated Engine) code package. Resonance self-shielding calculation is a very important part in the reactor physics calculation. It provides effective cross section for the next transport calculation. Traditional two-region resonance calculation method based on equivalence theory was developed in the cosLATC code. However, for the fuel pin which contains strong resonance self-shielding effect or huge absorption cross section nuclides, the spatial variation of the self-shielding effect is crucial to determine its radial power distribution. The equivalence theory assumes a spatially constant cross section within the fuel region and cannot evaluate spatially dependent resonance self-shielding effect. So the SDDM (Spatially Dependent Dancoff Method) self-shielding resonance was developed in the latest version of cosLATC which can split the fuel pellet into arbitrary number of annuli and generate the effective cross section for every annulus. A serial of benchmarks are calculated to verify this new resonance self-shielding module were performed. These benchmarks include different assembly problems of Watts Bar benchmark and critical benchmarks. The results show that the new resonance self-shielding module is capable of modeling the resonance self-shielding in a variety of PWR benchmarking cases, including difficult fuel lattice cases with poison, control rods or mixed gadolinia fuel rods. The critical calculation results can be accepted for the lattices which the conditions vary with the enrichment, radius of fuel rods, lattices pitch and experimental buckling.