ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
S. Chatzidakis, S. Cetiner, H. Santos-Villalobos, J. J. Jarrell, J. M. Scaglione (ORNL)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 714-720
Over 2,000 canisters are being used for dry storage of commercial spent nuclear fuel (SNF) in the United States, and each year, between 150–200 new canisters are loaded. There is evidence that these welded stainless steel canisters are susceptible to stress corrosion cracking (SCC) under certain conditions (1). Undetected crack development may result in a loss of confinement. SCC is very difficult to predict with crack opening displacements of 15–30 ?m, which are much smaller than what can be detected with current visual inspections (~100 ?m) (2, 3). The lack of initial cracks does not preclude formation of cracks in the future. This observation is particularly critical for SCC, which is characterized by a long incubation period, after which crack initiation and growth evolution is depth dependent. If crack growth is rapid, SCC may not be detected in time to prevent the loss of canister confinement without frequent nondestructive examination (NDE) inspections (4).
Proposed NDE techniques include periodic inspections using eddy currents, bulk ultrasonic waves, guided and surface waves, as well as continuous noncontact monitoring methods such as passive acoustic emission. To develop monitoring systems for SCC, sensor requirements must be carefully considered and evaluated with respect to radiation resistance, size, power consumption, defect sensitivity, axial and lateral resolution, signal-to-noise ratio, and scanning time. This paper examines monitoring requirements, and a variety of sensor types are considered and compared against these metrics. This work focuses on detection and characterization of SCC in welded stainless steel canisters placed within concrete overpacks. Potential compromises, advantages, disadvantages, and compatibility with other state-of-the-art and complementary monitoring techniques such as thermographic phosphors are discussed.