ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Zhengzhi Liu (Univ of Tennessee, Knoxville), Stylianos Chatzidakis, John M. Scaglione (ORNL), Can Liao, Haori Yang (Oregon State Univ), Jason P. Hayward (Univ of Tennessee, Knoxville)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 701-705
Cosmic ray muon-computed tomography (?CT) is a new imaging modality with unique characteristics that can be particularly important for applications in nuclear proliferation detection and international treaty verification. Using cosmic ray muons for nuclear security presents several potential advantages. Among others, muons are generated naturally in the atmosphere, can penetrate high-density materials, and are freely available. No radiological sources are required and consequently there is no associated radiological dose. Recently, the feasibility of using muons for imaging spent nuclear fuel stored in shielded casks has been explored and has been proved beneficial. However, challenges in ?CT imaging include low muon flux of ~10,000 muons/m2/min, the effects of multiple Coulomb scattering (MCS) blurring the image, and inefficiency in being able to use all recorded muons for imaging. In this paper, we argue that the use of muon tracing should produce tomographic muon images with improved quality – or more quickly for the same image quality – compared to the case where conventional methods are used. In our paper, we report on the development and assessment of a novel muon tracing method for ?CT. The proposed method back projects the muon’s scattering angle into each pixel crossed by its PoCA trajectory then forward projects the variance of the scattering angle in each pixel to detector bins along the muon’s incident horizontal direction. Two scenarios were simulated to assess the expected detection capability of this proposed method. GEANT4 was used to model the main characteristics of 1-60 GeV muons through matter. The simulated images showed an expected improvement in resolution and a reduced the reliance on the muon momentum information compared to a more conventional muon tomography method.