ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Joshua Stone, Hangbok Choi, Robert W. Schleicher (General Atomics)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 685-693
Accident Tolerant Fuels (ATF) are being developed f to replace current zircaloy clad fuels in light water reactors (LWRs) to improve both safety and economic performance. As part of this effort, General Atomics (GA) is developing silicon carbide fiber – silicon carbide matrix composite (SiC-SiC) cladding to provide larger safety margins, high burnup capability, longer cycle lengths and uprated operation. In order to quantify the advantage of SiC-SiC over zircaloy, GA has modified the transient fuel performance code, FRAPTRAN, for modeling SiC-SiC-based cladding using public and private SiC property data and GA-developed failure models. The present work compares the performance of SiC-SiC verses zircaloy cladding around UO2 fuel for transients which can lead to damage of the fuel cladding. The transient cases selected are French CABRI reactor tests for Pressurized Water Reactor (PWR) fuel at hot coolant conditions, Japanese NSRR tests at cold coolant conditions, Halden IFA-650 and Power Burst Facility (PBF) LOC-11C. Results show the SiC-SiC cladding offers comparable or superior performance to zircaloy for the cases analyzed.