ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
James Schneider, Mark Anderson (Univ of Wisconsin, Madison), Emilio Baglietto (MIT), Sama Bilbao y Leon (Virginia Commonwealth Univ), Matthew D. Bucknor (ANL), Sarah Morgan (Virginia Commonwealth Univ), Matthew Weathered (ANL), Liangyu Xu (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 642-649
The sodium fast reactor (SFR) is the most mature reactor concept of all the generation-IV nuclear systems and is a promising reactor design that is currently under development by several organizations. The majority of sodium fast reactor designs utilize a pool type arrangement which incorporates the primary coolant pumps and intermediate heat exchangers within the sodium pool. These components typically protrude into the pool thus reducing the risk and severity of a loss of coolant accidents. To further ensure safe operation under even the most severe transients a more comprehensive understanding of key thermal hydraulic phenomena in this pool is desired. One of the key technology gaps identified for SFR safety is determining the extent and the effects of thermal stratification developing in the pool during postulated accident scenarios such as a protected or unprotected loss of flow incident. In an effort to address these issues, detailed flow models of transient stratification in the pool during an accident can be developed. However, to develop the calculation models, and ensure they can reproduce the underlying physics, highly spatially resolved data is needed. This data can be used in conjunction with advanced computational fluid dynamic calculations to aid in the development of simple reduced dimensional models for systems codes such as SAM and SAS4A/SASSYS-1.