ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sajid Iqbal, Muhmood ul Hassan, Ho Jin Ryu, Jong-Il Yun (KAIST)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 623-627
We have investigated the low temperature sintering behavior of pure hydroxyapatite (HA) and silica incorporated HA for the immobilizing radioactive nuclear waste. Solid state sintering conditions were optimized at 200 ?C by applying a uniaxial pressure of 400 MPa for a short holding time (10 min). The results from high resolution x-ray diffraction, Fourier transform infra-red spectroscopy, micro hardness, and high resolution scanning electron microscopy confirmed the densification with enhanced mechanical properties. The increasing trend in relative sintered density has been observed with the loading amount of silica. No additional chemicals and binders were used during whole experimentation process. Therefore, this sintering route is totally environment benign, energy efficient and simplified. The ultra-low temperature can makes this sintering process widely useful for the immobilization of volatile radionuclides such as Cs-137 and I-129.