ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Charles Forsberg (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 612-622
Research and development is underway on three classes of nuclear reactors that use salt: (1) Fluoride Salt-Cooled High-Temperature Reactors (FHRs) with clean fluoride salt coolants and solid fuel, (2) Molten Salt Reactors (MSRs) with fuel dissolved in either a fluoride or chloride salt and (3) salt-cooled fusion reactors with fluoride salts for cooling, tritium production and shielding. These reactors require salt coolant cleanup systems for corrosion control and removal of impurities (corrosion products, activation products and fission products) with solidification of the waste products for disposal.
From 1950 to the 1970s there was significant work on salt processing associated with MSR programs—but until recently little new research on salt purification and conversion of halide wastes into acceptable waste forms. Since the 1970s major developments in related fields have created the technology base for advanced salt cleanup and waste solidification processes—the backend of salt-reactor fuel cycles.
We describe pathways from (1) the molten salts in the reactor systems to (2) separations with recycle of salt to the reactor and a waste salt stream to 3) conversion of waste salts into final waste forms. The separations options include distillation, electrochemical and other processes. Waste form requirements depend upon (1) the chemical and radio-isotopic composition, (2) laws and regulations and (3) disposal site waste acceptance criteria. For high-level wastes (HLWs), the waste treatment options include converting waste salts into iron phosphate or borosilicate waste glasses with recycle of the chloride (especially if chloride-37 is used) or fluoride anion. Iron phosphate and borosilicate are the standard chemical forms for disposal of HLWs in geological repositories. Significant work will be required to sort out preferred options and address major uncertainties.