ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
R. Austin Freeman, Thomas Martin, Elwyn Roberts, Travis W. Knight (Univ of South Carolina)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 605-611
Uranium Silicide (U3Si2) is being evaluated as a fuel for use in light water reactors as its desirable thermophysical properties suggest an improvement over UO2 with respect to accident tolerance, However, much is still unknown about the in-reactor performance of U3Si2, making an accurate assessment of the fuel challenging. To better understand the behavior of U3Si2 across a wide range of possible environments, high temperature compressive creep testing has been performed on U3Si2 pellets. Using the combination of constant stress and constant temperature testing, a numerical model was developed that can predict both primary and secondary creep rates under a wide range of temperature and stress conditions. This model was implemented in BISON, a coupled multi-physics finite element nuclear fuel performance code, to simulate the performance of U3Si2 under a range of reactor conditions and analyze the effect of creep on fuel behavior from startup through pellet-clad mechanical interaction (PCMI). These models indicate that while thermal and irradiation volumetric effects are dominant during normal operation, under extreme stresses and temperatures creep can become a significant factor. Specifically, under PCMI creep was found to have a noticeable impact on the rate of stress change in the cladding and could extend the lifetime of the cladding by months.