ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
R. Austin Freeman, Thomas Martin, Elwyn Roberts, Travis W. Knight (Univ of South Carolina)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 605-611
Uranium Silicide (U3Si2) is being evaluated as a fuel for use in light water reactors as its desirable thermophysical properties suggest an improvement over UO2 with respect to accident tolerance, However, much is still unknown about the in-reactor performance of U3Si2, making an accurate assessment of the fuel challenging. To better understand the behavior of U3Si2 across a wide range of possible environments, high temperature compressive creep testing has been performed on U3Si2 pellets. Using the combination of constant stress and constant temperature testing, a numerical model was developed that can predict both primary and secondary creep rates under a wide range of temperature and stress conditions. This model was implemented in BISON, a coupled multi-physics finite element nuclear fuel performance code, to simulate the performance of U3Si2 under a range of reactor conditions and analyze the effect of creep on fuel behavior from startup through pellet-clad mechanical interaction (PCMI). These models indicate that while thermal and irradiation volumetric effects are dominant during normal operation, under extreme stresses and temperatures creep can become a significant factor. Specifically, under PCMI creep was found to have a noticeable impact on the rate of stress change in the cladding and could extend the lifetime of the cladding by months.