ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. Austin Freeman, Thomas Martin, Elwyn Roberts, Travis W. Knight (Univ of South Carolina)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 605-611
Uranium Silicide (U3Si2) is being evaluated as a fuel for use in light water reactors as its desirable thermophysical properties suggest an improvement over UO2 with respect to accident tolerance, However, much is still unknown about the in-reactor performance of U3Si2, making an accurate assessment of the fuel challenging. To better understand the behavior of U3Si2 across a wide range of possible environments, high temperature compressive creep testing has been performed on U3Si2 pellets. Using the combination of constant stress and constant temperature testing, a numerical model was developed that can predict both primary and secondary creep rates under a wide range of temperature and stress conditions. This model was implemented in BISON, a coupled multi-physics finite element nuclear fuel performance code, to simulate the performance of U3Si2 under a range of reactor conditions and analyze the effect of creep on fuel behavior from startup through pellet-clad mechanical interaction (PCMI). These models indicate that while thermal and irradiation volumetric effects are dominant during normal operation, under extreme stresses and temperatures creep can become a significant factor. Specifically, under PCMI creep was found to have a noticeable impact on the rate of stress change in the cladding and could extend the lifetime of the cladding by months.