ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Luis Alva, Xinyu Huang (Univ of South Carolina), George Jacobsen (General Atomics)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 598-604
The nuclear fuel cladding undergoes severe thermal shock during reflooding of the nuclear core after a loss of coolant accident (LOCA). The purpose of this work is to evaluate the resistance of SiCf-SiCm composite cladding to such thermal shock events. In order to achieve this goal, a nuclear grade SiCf-SiCm composite tube, manufactured by General Atomics (GA), was quenched from an outer surface temperature of 1000 ºC into room temperature (RT) water and hot water. The composite tube was heated by a tungsten rod placed inside the tubular sample to simulate the fuel pellet. The tungsten rod was heated to a centerline temperature of 1400 ºC by an induction coil. To monitor the progressive damage of the SiCf-SiCm composite tube, the acoustic emission (AE) technique is used to acquire the acoustic signals during the test. The samples quenched into RT water showed visible cracks while the sample quenched in hot water did not. Some of the AE signals are related to cracks in the material during quenching. After quenching, the burst strength of the SiCf-SiCm composite tube is measured using a bladder technique. Results show that the SiCf-SiCm composite tube retains more than 88% of its strength after quenching.