ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Xiaoli Wu, Jian Deng, Liqiang Hou, Lili Liu, Dan Zhang , Hongsheng Yuan (Nuclear Power Inst of China)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 584-589
MAAP5 is capable of simulating the whole response of a PWR nuclear power plant under severe accident conditions. An analysis of the severe accident scenarios in a PWR by MAAP5 were carried out. It was assumed that the severe accident was initiated by an unusual small-break loss-of-coolant accident (SBLOCA) at the reactor pressure vessel (RPV) lower head and the failure of high-pressure injection system (HPIS) in a PWR by using MAAP5 were carried out. Different break sizes with and without manual depressurization of the reactor coolant system (RCS) were studied. The results showed that without manually depressurization the RCS, reactor core underwent slow heatup and completely melted and eventually failed the RPV lower head at the primary system pressure of 6.87 MPa for 0.4-inch-break LOCA and 2.71 MPa for 1.0-inch-break LOCA. On the other hand, timely manually opening the pressurizer (PZR) safety valves (SVs) was an effective mitigation measure to recover the core coolabilty by cold-leg accumulator injection system (AIS) and low-pressure injection system (LPIS). Besides, reasonably manually opening the steam generators (SGs) SVs while keeping the auxiliary feedwater work also helped to depressurize the RCS and prevent the severe accident. Both of the two mitigation measures successfully prevented the core from complete melt, but the latter one is preferable to the former one provided no steam generator tube rupture took place.