ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Edouard Hourcade (CEA), Takatsugu Mihara (JAEA), , Alexandre Dauphin, Jean-François Dirat (Framatome), Akihiro Ide (MFBR)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 556-561
ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) has the objective to integrate innovative options with the objective to prepare the 4th generation reactors.
In this framework a French-Japanese agreement was signed in 2014 between CEA, framatome (ex AREVA NP), JAEA, MHI/MFBR to jointly perform components design of ASTRID such as Decay Heat Removal Systems (DHRS).
In this respect an ambitious close collaboration is set in the framework of the practical elimination objective of Decay Heat Removal (DHR) function loss which is one of the main ASTRID safety objectives.
To reach this target, design is driven by deterministic safety criteria, probabilistic safety indicators and proper technical and economic analysis.
Safety demonstration aims at identifying common cause failures and imposes to search for proper diversification of decay heat removal systems. In ASTRID, DHRS main diversification is based on final heat sinks types and intermediate coolant fluids. It is also based on spatial segregation of systems which leads to thermal loading diversification during normal operation as well as severe accident exposure. Implication of two different designers bodies framatome and a Japanese team (JAEA, Mitsubishi FBR Systems (MFBR) and MHI) also participate to diversification.
This paper is giving an update concerning ASTRID DHR strategy with description of reference architecture evolution and project objectives. In particular, new developments were made for DHR during normal shutdown and role of Ex-Vessel system. A special focus is made on design process of automatic shutter to hydraulically connect Hot Plenum and cold plenum to enhance primary vessel natural convection.