ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Mauricio Tano, Pablo Rubiolo (Univ of Grenoble-Alpes), Julien Giraud, Veronique Ghetta (LPSC, CNRS/IN2P3)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 533-542
Inverse problem methods deal with the evaluation of the causal factors that result on a set of measurements or observations. Inverse problems found in nuclear reactors involve non-linear and coupled physical phenomena, making the causation effects complicated to de assessed. Furthermore, the extent of the experimental data collected is limited and this data is subjected to experimental noise. In the following paper, a method for solving inverse problems in nuclear reactors with coupled physical phenomena is developed. In the proposed approach, the inverse problem is solved through the minimization of a performance function. The minimization of this performance function is achieved with a preconditioned gradient descendent method. The generalized gradient of the performance function is obtained using the adjoint of the multiphysics equations of the system. Furthermore, for reducing the sensitivity to noise of the inverse problem, a preconditioner based in a Kalman Filter is developed. As an example, the methodology is applied for solving the inverse problem of finding the heat flux in the wall of a natural convection experiment.