ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Mauricio Tano, Pablo Rubiolo (Univ of Grenoble-Alpes), Julien Giraud, Veronique Ghetta (LPSC, CNRS/IN2P3)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 533-542
Inverse problem methods deal with the evaluation of the causal factors that result on a set of measurements or observations. Inverse problems found in nuclear reactors involve non-linear and coupled physical phenomena, making the causation effects complicated to de assessed. Furthermore, the extent of the experimental data collected is limited and this data is subjected to experimental noise. In the following paper, a method for solving inverse problems in nuclear reactors with coupled physical phenomena is developed. In the proposed approach, the inverse problem is solved through the minimization of a performance function. The minimization of this performance function is achieved with a preconditioned gradient descendent method. The generalized gradient of the performance function is obtained using the adjoint of the multiphysics equations of the system. Furthermore, for reducing the sensitivity to noise of the inverse problem, a preconditioner based in a Kalman Filter is developed. As an example, the methodology is applied for solving the inverse problem of finding the heat flux in the wall of a natural convection experiment.